0=-16t^2+128t+320

Simple and best practice solution for 0=-16t^2+128t+320 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16t^2+128t+320 equation:



0=-16t^2+128t+320
We move all terms to the left:
0-(-16t^2+128t+320)=0
We add all the numbers together, and all the variables
-(-16t^2+128t+320)=0
We get rid of parentheses
16t^2-128t-320=0
a = 16; b = -128; c = -320;
Δ = b2-4ac
Δ = -1282-4·16·(-320)
Δ = 36864
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{36864}=192$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-128)-192}{2*16}=\frac{-64}{32} =-2 $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-128)+192}{2*16}=\frac{320}{32} =10 $

See similar equations:

| 7x+1=-71-x | | v-2.17=5.85 | | -10=-9+x/2 | | T20=10n+5 | | -3+x=-4x-38 | | -7(k-3)-(3+9k)=-17k | | X+6=10x-13 | | 5u-14=4u | | 7x+7=-11+4x | | 6m-3-42=9 | | ×+6=10x-13 | | 7-3x=3x-29 | | 5-6a-5=18 | | 10x-13=×+6 | | 3+5x=x-27 | | x^2+x-18=-12 | | m/8=3/5 | | 4(y-9)=-9y+29 | | -7(x+2)=-6x-3 | | 6=8/m | | -7(×+2)=-6x-3 | | X2+y2=8 | | (x^2+112)(16x+131)=0 | | 3y^2-8y-15=0 | | 7x+12=7x+9 | | 1/2t8=1 | | (x^2+112)+(16x+131)=0 | | 2y^2-15-5y=y2-3y | | 3^4x=31 | | (x^2+112)=(16x+131)+0 | | 9-2n=8 | | ((9t+1)/8)=((t+6)/16)+((t-4)/16) |

Equations solver categories